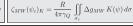
Modifikation der Stokes-Funktion

bei regionaler Quasigeoidbestimmung

Wird die regionale Ouasigeoidbestimmung im Konzept der spektralen Zerlegung durchgeführt, so ist die nach Molodenskij definierte Schwereanomalie in cinen lang-, kurz- und mittelwelligen Anteil zu zerlegen. Die spektrale Zerlegung wird im Remove-Step auf die Schwereanomalie und im Restore-Step auf die zu bestimmende Höhenanomalie ζ angewendet. Der langwellige Anteil wird dabei durch ein Kugelfunktionsmodell dargestellt. Der kurzwellige Anteil wird der Topographie zugeordnet und durch das "Residual Terrain Modelling" (RTM) auf der Grundlage von digitalen Geländemodellen berechnet. Mit dem Ansatz des Remove-Compute-Restore können im Restore-Step konsistente lang- und kurzwellige Anteile des Störpotentials berechnet werden. Die somit erhaltenen mittelwelligen Schwereanomalien werden im Compute-Step (Feldtransformation) mittels Anwendung des Stokes-Integrals in den mittelwelligen Anteil an der Höhenanomalie umgerechnet.

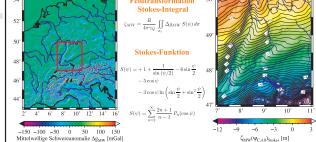
Da nicht über die gesamte Erdoberfläche integriert wird, ist die als Kernfunktion auftretende Stokes-Funktion $S(\psi)$ zu modifizieren, um den Abbruchfehler (Omission Error) zu minimieren. Die modifizierte Stokes-Funktion wird als Kernfunktion $K(\psi)$ bezeichnet. Der Integrationsradius Ψc ist an die regionale Ausdehnung des Integrationsbereichs σ anzupasser

Schwereanomalie: $\Delta g = g_p - g_Q = \Delta g_{LW} + \Delta g_{MW} + \Delta g_{KW}$ Höhenanomalie: $\zeta = \zeta_{LW} + \zeta_{MW} + \zeta_{KW}$



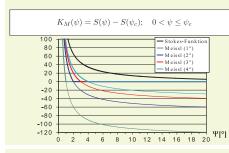
Feldtransformation Stokes-Integral $r_W = \frac{R}{4\pi\gamma_Q} \iint_{\sigma_c} \Delta g_{MW} S(\psi) d\phi$ Stokes-Funktion

Thomas Grombein, Kurt Seitz und Bernhard Heck



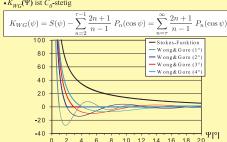
Meissl (1971)

- Integrationsradius \(\Pc \) wählen
- $K_M(\Psi)$ ist C_0 -stetig



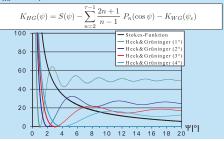
Wong& Gore (1969)

- Grad der Modifikation τ wählen
- Integrationsradius \(\Psi \) in der ersten Nullstelle der Kernfunktion

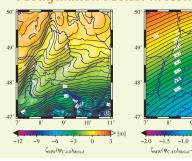


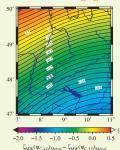
Heck&Grüninger (1987)

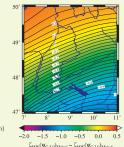
- Grad der Modifikation τ wählen
- Integrationsradius Ψc im ersten Minimum der Kernfunktion
- $K_{HG}(\Psi)$ ist C_I -stetig

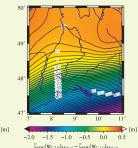


Modifikation Meissl in Abhängigkeit vom Integrationsradius









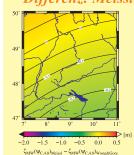
$\zeta_{\scriptscriptstyle MW}(\Psi e)_{\mbox{Meissl}}[m]$

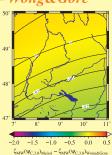
Ψc["]	Min	Max	Mittel	LI	RMS	SID
0.997532	- 4.094	0.618	-0.158	0.499	0.761	0.744
2.005800	-5.836	0.892	-0.421	0.890	1.329	1.260
2.931964	- 6.980	1.105	-0.759	1.249	1.802	1.635
4.055708	-8.095	1.372	-1.213	1.646	2.313	1.970

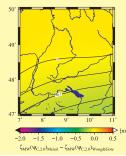
Differenzen [m]

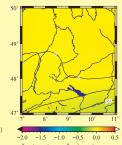
2.0 - 1.0	-1.873	0.338	-0.263	0.460	0.635	0.578
3.0 - 2.0	-1.180	0.356	-0.338	0.440	0.551	0.435
4.0 - 3.0	-1.139	0.413	-0.454	0.499	0.593	0.382
110 210	11125	01112	01.10.1	011111	01070	01202

Differenz: Meissl - Wong&Gore









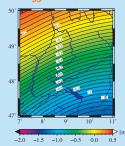
Differenzen [m]: Meissl-Wong&Gore

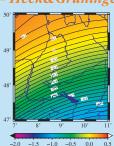
Ψc[°]	Min	Max	Mittel	L1	RMS	STD
0.997532	-0.146	0.026	-0.010	0.024	0.036	0.035
2.005799	-0.204	0.039	-0.031	0.052	0.071	0.064
2.987735	-0.235	0.065	-0.060	0.079	0.101	0.082
4.055708	-0.270	0.089	-0.095	0.108	0.132	0.091

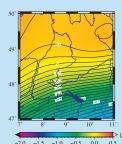
Integrationsradius und Modifikationsgrad

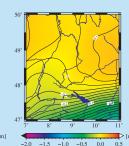
Meissl	Wong&Gore		
Ψc[°]	Ψc[°]	τ	
0.997532	0.997532	64	
2.005800	2.005800	32	
2.931964	2.931964	22	
4.055708	4.055708	16	

Differenz: Meissl - Heck&Grüninger









Differenzen [m]: Meissl-Heck&Grüninger

Ψc[°]	Min	Max	Mittel	L1	RMS	STD
1.0	-0.747	0.130	-0.049	0.123	0.183	0.176
2.0	-1.027	0.193	-0.153	0.259	0.355	0.320
3.0	-1.095	0.301	-0.275	0.364	0.469	0.381
4.0	-1.310	0.429	-0.455	0.516	0.634	0.442

	integrations:	adius and moun	IIIXMEIOIISE			
	Meissl	Heck&Grü	Heck&Grüninger			
	Ψc[°]	Ψc[°]	τ			
	0.997532	0.999637	116			
	2.005800	2.004150	58			
1	2.931964	2.987735	39			
	4.055708	4.028397	29			

Fazit:

- \bullet Modifizierte Kernfunktionen $K(\psi)$ liefern signifikant unterschiedliche Beiträge zu den Höhenanomalien
- $\bullet \mbox{Mit wachsendem sphärischen Radius } \Psi c \mbox{ des Integrationsgebiets } \sigma c \mbox{ wachsen auch die H\"{o}henanomalien systematisch an }$
- Differenzen bezüglich unterschiedlicher Kernfunktionen als auch Integrationsradien zeigen einen glatten, langwelligen Verlauf
 Durch Anwendung der modifizierten Molodenskii-Koeffizienten können langwellige Beiträge aus dem Fernbereich modelliert werden
- Eine endgültige Datumsgebung des Quasigeoidmodells erfolgt durch Anpassung über identische Punkte

