

Automatisierte Kalibrierung von Richtungsmesssystemen

in rotativen Direktantrieben

Claudia Depenthal

Aufgabe

Bestimmung einer Kalibrierfunktion für rotative Direktantriebe

Motivation

- Rotative Motoren als Direktantriebe sind meist mit einem Messsystem bestehend aus Rasterscheibe, Abtastkopf und einer Referenzmarke ausgestattet
- Genauigkeit der Winkelmessung wird hauptsächlich beeinflusst durch
 - Exzentrizität der Teilung zur Lagerung
 - Rundlaufabweichung der Lagerung
 - Teilungsgenauigkeit der Rasterscheibe
 - Einflüsse Abtastung und Signalverarbeitung

- Systematische Abweichungen sind groß im Vergleich zur Wiederholgenauigkeit, weswegen eine Kalibrierung erheblichen Genauigkeitsgewinn erbringt
- Hochfrequente Kalibrierfunktionen erfordern viele Stützstellen und damit eine Automatisierung

Messmittel

- Elektronischer 2-Achs-Autokollimator ELCOMAT 3000 von Möller-Wedel ($\sigma = \pm 0.1$ " bei ± 1000 ", $\sigma = \pm 0.01$ " bei ± 20 " Messbereich)
- Leitz Spiegelpolygon mit 12 Flächen und ausrichtbarer Polygonachse

Genauigkeitslimitierung

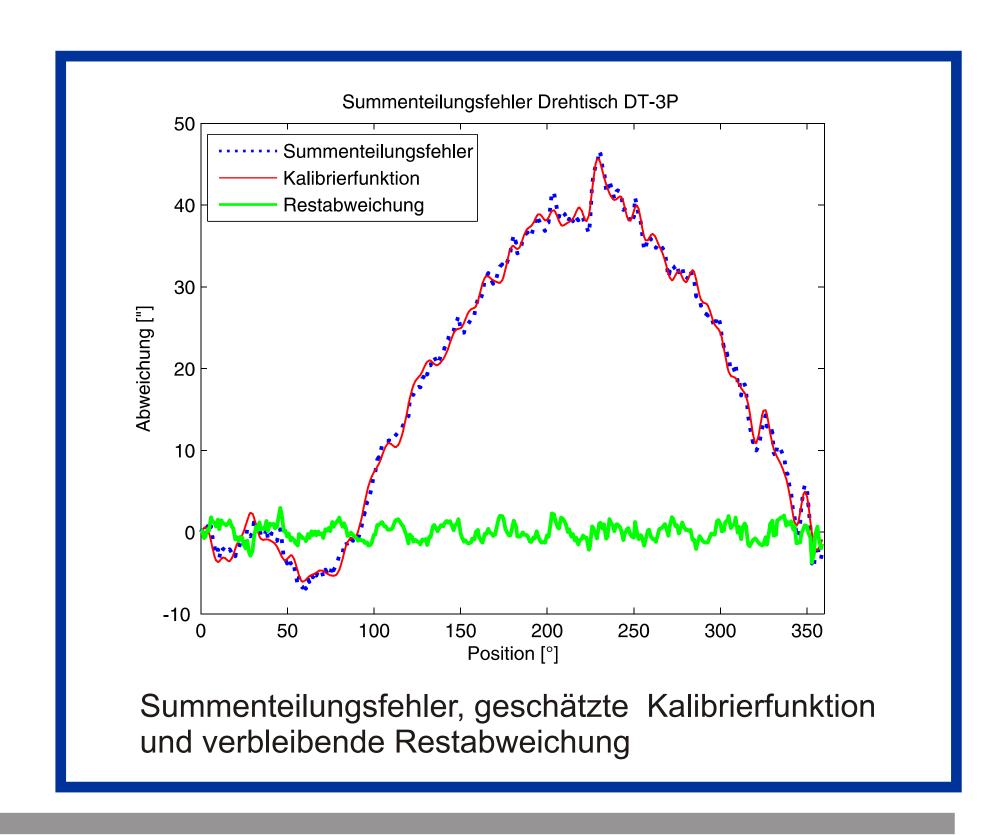
- durch Reproduzierbarkeit der Positionierung
- Bestimmung der Positionsabweichung durch mehrmaliges Anfahren der gleichen Position

Positionsstreubreite durch Wiederholungsmessungen: Referenzpunkt Drehtisch DT-3P 2.5 2 1.5 0.5 -1 -1.5 -2 2.5 2 40 60 80 100 Bestimmung der Positionsabweichung

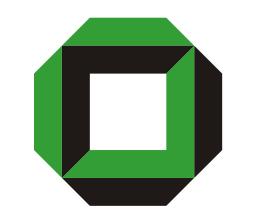
Rosettenverfahren

- Prinzip: Vergleich aller Teilungswinkel von zwei Kreisteilungen in allen möglichen Relativlagen der beiden Teilungen zueinander
- Vorteil: Gleichzeitige Kalibrierung von Prüfling (rotativer Direktantrieb) und Spiegelpolygon
- Nachteil: beschränkt auf 12 Stützstellen, bedingt durch die Polygonflächenanzahl

Erweiterung auf beliebige Winkelintervalle


- Prinzip: Erweiterung durch Messreihen an diskreten Startpositionen innerhalb eines Winkelintervalls des Spiegelpolygons und Einhängen in die Rosettenmessreihe durch Zentrierung
- Vorteil: beliebig kleine Intervalle und dadurch hohe Stützstellendichte zur Bestimmung einer Kalibrierfunktion

Anwendung


- Drehtisch DT-3P von IDAM (INA Drives & Mechatronics)
 Messsystem Numerik Jena Auflösung 0.22"
- max. Positionsstreubreite ± 2 "

 Messunsicherheit $u_c(p) = 1.16$ "
- Summenteilungsfehler in 1°- Intervallschritten Messunsicherheit $u_c(x) = 0.29$ "
- kombinierte Standardunsicherheit

$$u_c = \sqrt{u_c^2(x) + u_c^2(p)} = 1.22$$
"

Universität Karlsruhe (TH)