easxx'\ﬂ% 13th FIG Symposium on Deformation Measurement and Analysis
W %65 4th IAG Symposium on Geodesy for Geotechnical and Structural Engineering
cnal

e LNEC, LISBON 2008 May 12-15

AN INNOVATIVE MATHEMATICAL SOLUTION FOR A TIME-
EFFICIENT IVSREFERENCE POINT DETERMINATION

Michael LOSLER and Maria HENNES
Geodetic Institute of the University of KarlsrufeH), Germany

Abstract: The improvement of the local ties between differenservation methods (GPS,
VLBI, etc.) improves the quality of the ITRF conerdbly. The IVS reference point of a
VLBI radio telescope is defined as the intersectetween the azimuth- and elevation-axis
or, if they do not intersect, the intersection loé right-angle projection from the elevation-
axis onto the azimuth-axis. In the past, these &aee been estimated by fitting 3D circles,
e.g. (Eschelbach etal., 2003) or (Dawson et@062 The data acquisition for the
determination of the circles requires that thesedpe has to be moved into clearly defined
positions; therefore, the basic station procest(gathering for the intrinsic telescope task) is
disturbed. In this paper we present an alternatiathematical model, which computes the
reference point without circle fitting. This algimn does not need observations from
predefined telescope positions and therefore thgosts downtime can be reduced. The
parameter estimation of this non-linear problenmiplemented in two steps. At first we are
using the Levenberg-Marquardt-Algorithm for a predeation to find stable approximate
values (Madsen et al., 2004), which we use fontaé least-square-model in a second step.

1. INTRODUCTION

The reference point of a VLBI radio telescope idirgml as the intersection between the
azimuth- and elevation-axis. If these axes do nt#rsect, the reference point is the right
angle projection from the elevation-axis onto therath-axis. As a rule the two axes of this
telescope will be derived by 3D circle fitting arnlde invariant reference point will be
estimated. For this the telescope rotates arouedaais while the second axis is fixed and
some targets on the telescope side will be obsdryexitheodolite or an instrument like that.
This is done step by step. The trajectory of evarget corresponds to a circle. The centre
points of these circles are also points of thetimtaaxis and will be used to approximate this
axis. For the determination of axis wobble, thecess must be repeated for many different
telescope orientations, whereas the orientatiorieangre not needed with high accuracy.
Getting the reference point by minimization thehogonal distance (eccentricity) between the
approximated elevation- and azimuth-axis is thalfstep. A detailed description of this way
of doing is published e.g. in (Eschelbach et @03 or (Dawson et al., 2006).

Nowadays, optical tracking measuring instrumenke la robot tacheometers and laser
trackers enable possibilities to replace this tooasuming method, because the necessary
data can be gathered while the telescope is mamageventually doing its intrinsic task. If
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the conventional circle fitting method shall be kg the circle model has to be expanded to
a torus-like structure to approximate the wholetutsured data set. The dimension of the
torus depends on the distance between the targeharelevation-axis; and the torus is very
thin due to the small — and unknown — eccentriditween the azimuth-axis and the
elevation-axis. Therefore, the results for the wvkm parameters (at least the eccentricity)
become uncertain.

Therefore will present an alternative method tanestie the reference point without circle (or

torus) fitting in this paper. The mathematical moages the 3D coordinates from targets on
the side of the telescope as auxiliary paramefdtsough the model requires the elevation
angles and the azimuth angles assigned to the negsime of the specific target to get the

connection between the telescope’s orientation thadlocal site network, the suggested
algorithm does not need observations assignedetbefined telescope positions. The method
can roughly be compared to solving two datasetspecific transformation parameters. To
solve the non-linear-problem the use of a dampeaiR&dewton-Method called Levenberg-

Marquardt-Algorithm, which is briefly described section 3.3, provides a first reliable set of
approximate values for the main least-square-model.

2. CONDITIONSAND RESTRICTIONS

2.1. Coordinate systems

There are two different coordinate systems to miistish between. Both are defined as
mathematical (right-handed), cartesian coordinatstesns. Firstly there is the standard
observationX,,., Yopsr Zops System from the observation instrument. This oae loe the

local site network at the station and does not reedétailed description. The second one is
the telescope systemy,, Vo, Zr - It is defined by the following:

- Origin of the coordinate system is the referendatpo

« The x-axis is parallel to the elevation-axis

- The z-axis corresponds to the azimuth-axis of ¢lestope

« The y-axis is normal to the x- and z-axis
The telescope system rotates around the z-axisvediato the fixed geodetic observation
system by the azimuth angle.

2.2. Restrictions

An ideal radio telescope is not given. Becausehi#, the mathematical model has to allow
for some restrictions on rather corrections, wtdaol shown in figure 1. They are parts of the
unknown parameters, which are estimated, too. Theeethree deviations related to the
construction of the telescope.

1. The elevation- and azimuth-axis do not interseber€ is an eccentricity between
these axes.

2. The angle between the elevation- and azimuth-avdsnat right-angled, therefore
there is a tiny correction angle.

3. The azimuth-axis and the z-axis of the observasigstem are not parallel to each
other but differ by a small angle.
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In addition, the positions of the observation-té&sgm the side of the telescope are arbitrarily.
Only the direction of rotation and the magnitudéwsen two telescope orientations are the
same (figure 4 in section 3.1). So, every angls getorrection value for the specific target,
too. To demonstrate the first and the third restnic(the second one is quite conceivable and
not shown), in Figure 1 the observation coordirsytetems is shift while the z-axis intersects
the azimuth-axis of the telescope.
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Figure 1 - Restrictions (eccentricity and inclioaf), for clearness shown in the coordinate
systemX' oo Yons: Zons: Which emantes from the observation system, VYo.. Zows DY
translation

3. MATHEMATICAL MODEL

3.1. Derivation

Due to the restrictions 1 and 2, which result irdiidnal parameters, all the unknown
parameters can not be solved in a one-step Helhnansformation. Therefore, in this section
we present the derivation of the new mathematicadlehby a step by step introduction for
one target. In the end of the section we obtaieettiransform equations, which can be used to
estimate the invariant reference pot in a closed mathematical model. In the following

the superior index is used to denote the resula efansformation equation, in this case
identical with the equation’s number.

Firstly, we adopt that the two defined coordinatstems in section 2.1 are congruent to each
other. So, the observation coordinate system islemguthe telescope coordinate system. In
the course of the derivation the difference betwbese coordinate systems will be explained
and the transformation formulas will be given. Ahgeal point P of the rotational solid is
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defined under disregard for every restriction arittheut any telescope twist, that means, that
the telescope orientation angles are zeros, as

Pl=[b a 0, (1)

whereash is the distance along the x-axis aads the shortest distance between the p&int
and the x-axis of the point coordinate system, Wisodenoted by an apostrophe and move on
to the telescope system in the end (note figuned34d. The z-value is set to zero, because the
elevation-angleE (Epsilon) is set to zero and therefarg = alsinE=0. So, the pointP,

which is represented by the target in figure 2, lies within the xy-plane.

X'y'—plane

»
»

b X

Figure 2 - Point definition

If the telescope rotates around the elevation-axian angleE, the pointP is the result of
the matrix multiplication (figure 2, targét ,):

1 0 0 b b
PZ:RX(E)EPlz 0 cosE -sinE£ |[Ja|=|altosE |, (2)
0 sinE cost| |0 alsinE

whereasR, (E) describes the rotation matrix for a rotation vilike elevation-angl& around
the x-axis. An eccentric distan@&between the two telescope axes, see the firstatast in
section 2.2, displaces the y-value®ft
0 b b
P3=Ecc+P2 =|e|+|altosE |=|e+altosE|. (3)
0 alBinE alBinE

The non-orthogonality between the axes of the tej@sds the second restriction. It can be
modelled by a rotatiofr, (y) around the y-axis with the correction-angle



A“eag\)f\“% 13th FIG Symposium on Deformation Measurement and Analysis

4th IAG Symposium on Geodesy for Geotechnical and Structural Engineering

\(\a(\%es
thec
LNEC, LISBON 2008 May 12-15

cosy 0 siny b cosy b +siny[@AlSinE
P‘=R,(y)lP*=| 0 1 0 |Qle+altosE|= e+altosE (4)

-siny 0 cosy alsinE —=siny b+ cosy[@SINE

A

Zl
Z.., = Azimuth-axis

Tel

X'= Elevation-axis

XTeI

Figure 3 - Connection between the point systemthedelescope system

So far the two defined coordinate systems in sec@id are congruent to each other because
there are no twists or translations. However, #igdt representing poir® rotates with the
telescope around the azimuth-axis. This rotation ba described by the rotation matrix
R, (A) and the azimuth angla (Alpha) as follows:

CosA sinA O cosy [ +siny[@AS$InE
P°=R,(A)P*=|-sinA cosA 0 e+altosE (5)
0 0 1| |-siny+cosylalsinE
The third restriction in section 2.2 was the nongfialism between the z-axis of the local
network coordinate system and the azimuth-axis hef tadio telescope. To model this
inclination two rotations and correction-angles aseded. The rotation around the y-axis

with an anglea rotates the azimuth-axis into the xz-plane. Thmsd rotation around the x-
axis with the correction-angl@ is essential to get the parallelism-condition lesw these

two axes. The inclination correctiorRY,X(a,ﬁ) can be described by the matrix
multiplication:
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1 0 0 cosa 0 sina
Ry x (@.8)=]0 cosg -sinp 0o 1 0
|0 sing cospB||-sina O cosa
(6)
cosa 0 sina
=|-sinfg+sina cosf -sinfltosa
| cosBlFsina sing  cospltosa

The pointP is then described by the equation:
P" =R (B)R, (a)P° =R, (a.8)P° (7)

Finally, a translation vector is added; that ddmsithe connection between the origins of the
two coordinate systems. This vectBy includes the coordinates of the invariant telescop

reference point. So, we get the three transformag¢iquations — one for each coordinate-
component —, which can be written as matrix additio

P=P,+P’ 8)

Remember the different orientations problem betwientargets and the radio telescope in
section 2.2. In order to use the azimuth- and ¢lewvaangle of the telescope to transform the
point P between the two coordinate systems, add the atientcorrectionsO, and O; to
these angles, refer figure 4:

Ap =A+0, ©)
E, =E+0O; (10)
The elevation correction angl®. is to estimate for every specific targét separately

whereas the azimuth correction an@lg is fixed for all targets.

A

ZTeI
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>
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Figure 4 - Target position after elevation rotatwith correction angle
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3.2. Least-Square-M odel

The three transformation equations — one for eamrdinate-component — in the section
above can be used to estimate the telescope retepmint P, by a least-square-adjustment

called GauB3-Helmert-Model. The (error-free) obsﬁwaparametersl: to solve the non-
linear problem F(I:,)z) include the 3D coordinatepX; 4 of the several

furthermore the telescope orientation ang4>e§pq and E,

]T
i.epg; Y i.epg; * i.epg;

targetsT whereasi is

iepg; i.epo;

the number of the specific target aedq. the associated observation epochTfis the first
target, the observations can be written as:

L= L+ = Xo0 Yan Zis A B K X e Yicoa  Zaena, +Atepo, e, JT +v, (11)

with L are the true values of the observatlon
The vector of unknown parameteﬁs can be classified in two groups:

and
. target-depended paramet@ﬁwget.

fixed parametersx

const

The eight fixed parameters are the 3D coordin%:)l«-:;g,YPR,ZPR ]T of the reference poin®y;,

the eccentricitye between the telescope axes, the small angleand £ to correct the
inclination, the angley to correct the non-orthogonality between the axes amditimuth
orientation correctiorO, . For every target the number of unknown parameteses up by

three. These target-depended parameters are the digstdluesa andb along the axes with
reference to the reference poiRL and the telescope coordinate system and the elevation

correction angléD. . The number of unknown parameterss:
u = uconst + target = 8+ 3[ (12)
It follows from the above equitation for the degreereétiom f

eanax

f=n-u=30>T

epo=1

~(8+30m), (13)

i,epo

whereasm is the number of targets.

The described transformation equations are non-linearefibre they have to be linearised by
a first-order Taylor expansion at first:

F(L, %)= F(L+v, X, +x)= ﬂlz)&) +0FLX [Q-zé aFLX [@52%&) (14)

1 4@'—43

The function of minimisation of this Gaul3-Helmerbbil is given by e.g. (Niemeier, 2002)
as follows:

Q=v'Q, v+2k" [{Bv+ Ax +W) » min (15)
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with the normal-equation:

P%™ P T} e

WhereasA is the Jacobian-matrix, which contains the padtivatives with respect to the
parametersX , B is the design matrix of conditions, which contaihe partial derivatives

with respect to the observatiorts, w is the vector of contradiction®),, is the cofactor

matrix of the observationt , x is the vector of increments and the vedtorconsists of so
called Laplace multipliers.

The Gaul3-Helmert-Model needs like every optimizatieethod approximate values, for
the unknown parameters, which are updated by etezation:

X =X, +X. a7

At each iteration the estimated valugs will be used as approximate values,. This
determination has to be repeated until the impr@r@mare converging towards zero. The
number of iterations is depending on the qualityhef approximate valueX,. To get a first

reliable solution the Levenberg-Marquardt-Algorithwhich is briefly described in the next
section, can be used.

3.3. Levenberg-Mar quardt-Algorithm

To solve a non-linear least-square problem reliahl&944 Kenneth Levenberg published the
suggestion to use a so called method of damped &pmre (Levenberg, 1944), which
Donald Marquardt took up again in 1963. The Levegidarquardt-Algorithm, named after
its developer, is a hybrid method between the ntkthiosteepest descent (also called as:
gradient descent direction) and the Gaul3-NewtorbtktBoth ones are able to solve a non-
linear problem iteratively. The main-differencesvizeen these methods are the number of
required iterations and therefore the runtime &eddifferent convergence criteria.

The Levenberg-Marquardt-Algorithm is an iterativethod and locates the minimum of a
function F in respect to the unknown parameté¢tsand is a standard technique for non-
linear least-square problems (Lourakis, 2005). Taenped Gaul3-Newton-Method is be
described in (Marquardt, 1963) by the equation:

(ATA+d)x =-ATw, (18)

whereasA is the Jacobian-matrix, which includes the fimstigations of the functiorF (X),

and the matrixl is the identity matrix. The vecton contains the residuals of the function.
The vector of incrementx is the so-called damped Newton step angd (,uzO), is the
damping parameter, which influences the directiot the size of the specific step. The scalar
M has to be set one-times in dependence on thedemiti of the approximation values under
the condition (Marquardt, 1963):

Qk+1 < Qk (19)

whereasQ is the function of minimisation at tHe'" iteration.
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For all ¢ >0 it ensures thatx converges along the direction of the minimum beeatine
coefficient matrix A is positive definite. Furthermore, a large valde o means that the

matrix is diagonal-dominated and the current soiuts far from the correct one. The method
works slowly because it is only a short step ingtezpest descent direction, but it guarantees
to converge.
1.+
xU-—A'w (20)
U

On the other hand, for a very small valueofthe algorithm switches to the Gaul3-Newton-
Method and gets (almost) quadratic convergence getaét al., 2004) because it is

(ATA+u)O(ATA) (22)
and therefore
x O-(ATA)*ATw. (22)

At each iteration the error reduction will be vieif (Qquod vide equation 19) and the damping
parameter adjusted. If the current step failecettuce the errors, the damping parameter will
have to be increased. Otherwigewill be reduced. For this reason the LevenbergeJardt-

Algorithm is adaptive (Lourakis, 2005) and providebable (robust) values.

A detailed analyse of the Levenberg-Marquardt-Athon is published by
(Madsen et al., 2004). For further information theerested reader is referred to this paper.
Additionally, there is described an implementatwithis algorithm. Furthermore, a short
description and an improved implementation in C/Qméer the terms of the GNU General
Public License are published by (Lourakis, 2005).

4. CONCLUSION

We have derived an alternative procedure to comihatenvariant reference point of a VLBI
radio telescope without circle fitting. The algbrit estimates the reference point and also the
antenna parameters “eccentricity” and “inclinationth respect to the telescope restrictions
in a closed model. It is possible to reduce thémsts downtime because the mathematical
model does not require observations from predefieégbcope positions as it is needed for
circle-fitting. Instead, the observation-data-refesed telescope-orientation is needed. This
can be easily archived by combining time-stampetiyimeter (or laser tracker) data with the
telescope observation protocol. Investigations @dothat the determination of the reference
point and the additional parameters will not beeetifd noteworthy by the uncertainty
introduced by this method of synchronisation, ié thata during a source observation is
gathered, meanwhile the telescope moves very slokivigll the data, i.e. including that
gathered during the repositioning of telescope motlzer source, is used, a sufficient
synchronisation can be achieved by using a trigigmal of the telescope’s control clock,
which triggers the laser tracker (Juretzko et @08). In both ways of doing, a reference point
determination could be carried out while the irgiinstation process is working. Our further
work will focus on the economic efficiency by priael applications of different measurement
equipment, culminating e.g. in active (i.e. seileating) reflector hubs.
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In addition, we presented the damped Newton metballed Levenberg-Marquardt-
Algorithm for the determination of approximate v@du which is an efficient technique for
non-linear least-square problems because it previdkable values. This damped Newton
method is a hybrid method to solve the non-lingablem. It is a combination of the steepest
descent method and the GauR3-Newton-Method.
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