Die Fehmarnbelt-Querung

Anforderungen an ein präzises Positionierungssystem für die Ingenieurvermessung

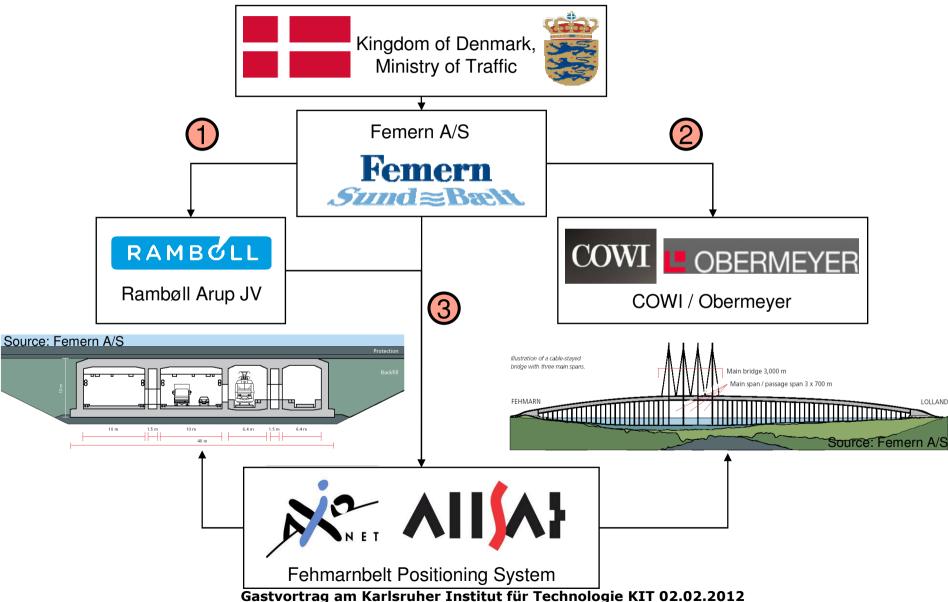

Dipl.-Ing. Jürgen RüfferÖffentlich bestellter und vereidigter Sachverständiger der Ingenieurkammer Niedersachsen für satellitengestützte Ingenieurvermessung

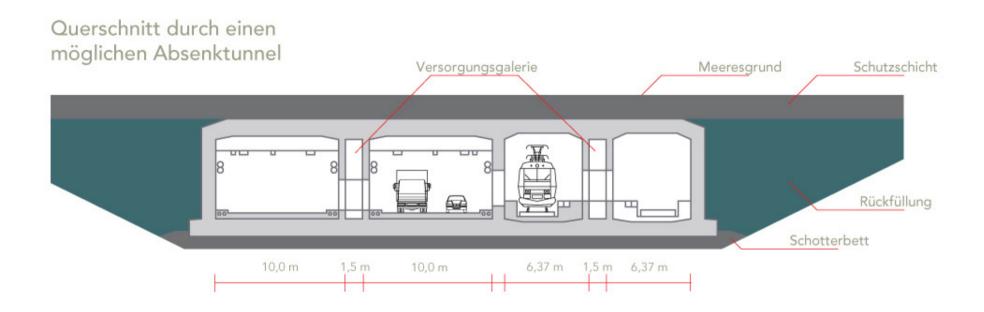
Große Infrastruktur-Projekte erfordern zu ihrer termin- und budgetgerechten Fertigstellung immer höhere logistische Anstrengungen.

Der Begriff "Quality of Service" spielt mittlerweile eine entscheidende Rolle bei Planung und Bau, wie das Beispiel der Fehmarnbelt-Querung zeigt.

aus Wikipedia:

Quality of Service (QoS) oder **Dienstgüte** beschreibt die Güte eines (Kommunikations-)Dienstes aus der Sicht der Anwender, das heißt, wie stark die Güte des Dienstes mit deren Anforderungen übereinstimmt. Formal ist **QoS** eine Menge von Qualitätsanforderungen an das gemeinsame Verhalten beziehungsweise Zusammenspiel von mehreren Objekten




Europäische Hauptverkehrsroute für Strasse und Schiene

- ein Projekt der Superlative

- die Querung soll bis 2021 eine internationale Strassen- und Eisenbahn-Verbindung zwischen dem europäischen Festlandsockel und Nordeuropa herstellen
- verbindet eine Meerenge von ca. 20km mit einigen km Anschluss an das Festland
- wird nach heutiger Planung zwischen 5 und 5,5 Mrd. € kosten (zum Vergleich: Galileo sollte ursprünglich 3,5 Mrd. € kosten, Stuttgart 21 4,1 Mrd. €)
- wird vorrangig vom dänischen Staat finanziert mit Unterstützung der EU sowie Mitteln aus Deutschland für die Landanbindung in Fehmarn
- auf Basis der Erfahrungen bei den Brückenbauten über den Storebælt sowie über den Øresund wird erstmals in der Geschichte grosser Bauprojekte ein Vermessungssystem – das FehmarnBelt Positioning System (FBPS) - vor Beginn der Ausführungsplanung installiert

- Projektbeteiligte zum Jahresbeginn 2011 (s.auch www.femern.de)

Was bedeutet Quality of Service (QoS)?

- Quality of Service (QoS) beantwortet die Frage: wie werden die Anforderungen an ein (Meß-) System erfüllt?
- Das Ziel von QoS ist es, Garantien für die Nutzung eines Systems zur Erreichung definierter Ergebnisse zu geben.
- Offene und vergleichbare Nutzung von QoS- Informationen erfordert Internationale Standards.
- QoS ist bereits definiert für Telekommunikationsanwendungen (z.B. Verfügbarkeit, Bandbreite, Verzögerung und Fehlerrate).
- ... aber ist es auch relevant für Ingenieur-Vermessungssysteme ?

Anforderungen an Quality of Service (QoS)

- Typische QoS Parameter in der (GNSS-)Vermessung sind:
 - Genauigkeit
 - Sicherheit(s-Wahrscheinlichkeit)
 - System-Verfügbarkeit
 - Ergebnis-Verfügbarkeit (nach einer Messung)

dagegen

- typische Marketing-Zertifizierung
 - System-Verfügbarkeit: 99% (monatlích)
 - Service Qualität (z.B. Verfügbarkeit eines Helpdesk)

Anfragen für Quality of Service (QoS)

für den Dauerbetrieb von Maschinen

- Ver- und Entsorger
- Industrie
- Land- und Forstwirtschaft
- Hafen-Navigation
- Bahn- und Strassen-Infrastruktur
- Maschinensteuerung
- Fluggeräte-Navigation
- grosse Ingenieurprojekte

Quality of Service (QoS) in der Ingenieurvermessung

Speziell beim Einsatz teurer Maschinen

Genauigkeit: < 2cm (nicht kritisch)

Sicherheit: 2-3 sigma

Verfügbarkeit (zeitlich): 24/7

schnelle und kontinuierlich verfügbare Ergebnisse (Echtzeit)

Quality of Service (QoS) - Herausforderungen

ReferenzStationen DatenErfassung DatenAuswertung Mobil-Kommunikation GNSS
Empfänger Anwendung Support

Beispiel System-Verfügbarkeit:

- → 99%
 - welche zeitliche Referenz (täglich, monatlich,)?
 - was wird gemessen (nur Datenfluss oder korrekte Daten)?
 - auf welchem Level (Einzelstation, Gesamtsystem, Region)?

- ..

99% Verfügbarkeit bedeutet:

1 Tag: ~ 14min Ausfall

--> Redundanz

1 Monat: ~ 432min Ausfall

--> = 7h Reparaturzeit

Quality of Service (QoS) - Schlussfolgerung

ReferenzStationen DatenErfassung DatenAuswertung Mobil-Kommunikation GNSS
Empfänger Anwendung Support

Schlussfolgerungen

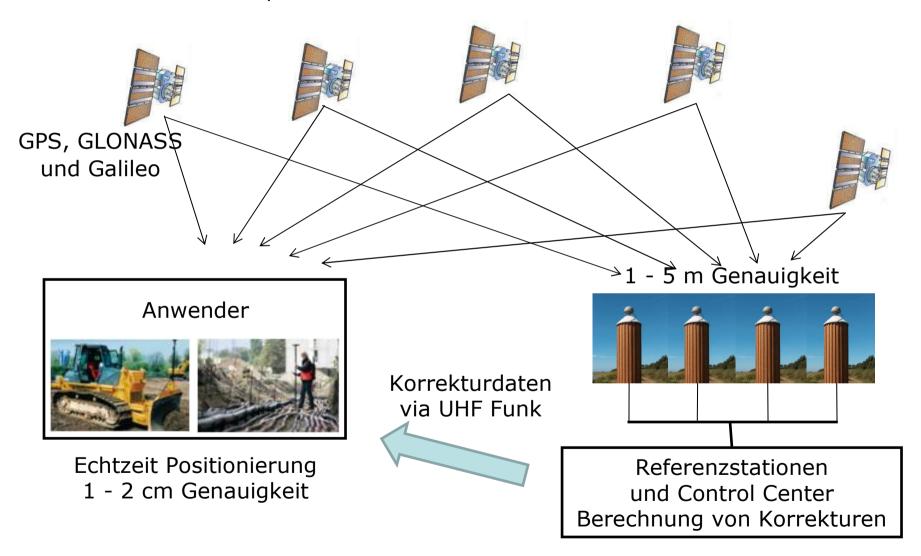
- Kundenanforderungen für QoS werden steigen
- Heute existiert keine Transparenz
- Zunehmende Forderung nach Standardisierung von QoS-Parametern im Bereich GNSS
- zur Relevanz von QoS:

Anwendung	Ausfall äquivalent	QoS Anforderung
Vermessung	→ 1h ~ 50 €	nicht relevant!
Maschinensteuerung	→ 1hour ~ 500 €	relevant!
Spezialanwendung	→ 1 hour >> 500 €	bedeutsam!

Quality of Service (QoS) - Fehmarnbelt

Anforderungen für ein Positionierungssystem zur Errichtung des Fehmarnbelt Fixed Link

ReferenzStationen DatenErfassung DatenAuswertung Mobil-Kommunikation GNSS
Empfänger Anwendung Support


das Fehmarnbelt Positioning System (FBPS)

- eine Übersicht

FBPS-Services

- technisches Prinzip

Basis für den Fehmarnbelt Positioning Service

- geodätisch (1/3)

Einrichtung eines geodätischen Referenzsystems auf Basis des IRTF 2005 mit Anschluss an benachbarte IGS-Stationen und GNSS Processing über Bernese, Definition eines Höhensystems basierend auf Mean Sea Level und einer pass-genauen Projektion für das Operationsgebiet der Bauarbeiten mit minimalen Verzerrungen

ausgeführt im Auftrag von Femern A/S durch

- BKG Bundesamt für Kartografie und Geodäsie
- Landesvermessung Schleswig-Holstein
- Dänische Katasterverwaltung
- National Space Institute of Denmark
- Strassenbauverwaltung Dänemark

Basis für den Fehmarnbelt Positioning Service

- geodätisch (2/3)

Dem neu definierten Höhensystem (MSL) liegen zugrunde

- ein 1987 durchgeführtes hydrostatisches Nivellement zwischen Dänemark und Deutschland
- mehrjährige Pegelbeobachtungen an den Pegeln Rødbyhavn und Marienleuchte
- Feinnivellements zur Verbindung der neuen GNSS-Stationen mit beiden o.g. Pegeln, mit den Haupt-Höhenpunkten des hydrostatischen Nivellements und den nationalen Höhennetzen von Dänemark und Deutschland

und das System ergibt sich aus

- den Ausgleichungsergebnissen für die neuen Höhenbeobachtungen mit den Ergebnissen der 20-jährigen Pegelbeobachtungen und den Ergebnissen des Hydrostatischen Nivellements
- der Bedingung dass die Nullebene dem Mean Sea Level des Fehmarnbelt möglichst nahe kommt
- der Realisierung des Höhensystems durch Anschluss an vorhandene Höhenfestpunkte in Dänemark und in Deutschland sowie an die Höhenbolzen an den vier Referenzstationen

Basis für den Fehmarnbelt Positioning Service

- geodätisch (3/3)

Um aus den Ergebnissen von GNSS-Messungen direkt MSL-Höhen ableiten zu können wurden

- verschiedenste gravimetrische Daten erhoben
- ein Geoidmodell daraus abgeleitet
- und dieses an Mean Sea Level und die lokale Realisierung des ITRF 2005 bestmöglich angepasst

Anforderungen Fehmarnbelt Positioning Service

- technisch

stabile Basis: Bewegungen < 1mm / Jahr</p>

Genauigkeit Echtzeit: < 1cm (rms) – Nachweis gemäss ISO 17 123-8

Abdeckung: mehrfach abgesicherte Überdeckung des

Projektgebietes

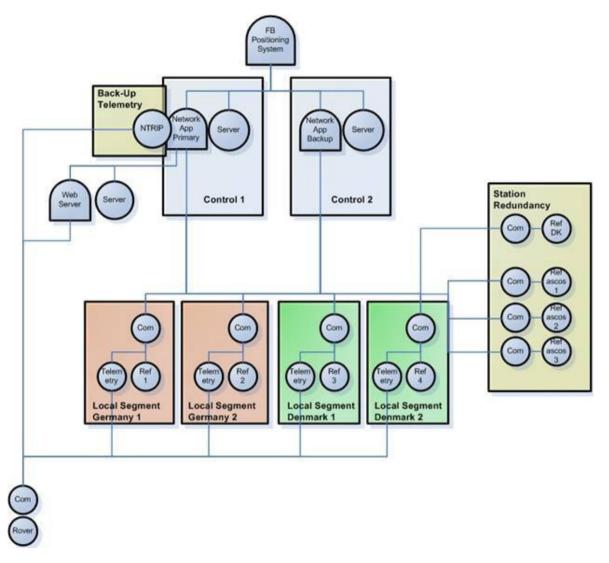
tägliche Verfügbarkeit: 99%, im ersten Betriebsjahr 97%

GNSS-Referenznetz: Modellierung der wichtigsten GNSS Fehler

Zusatzdienste: Webserver

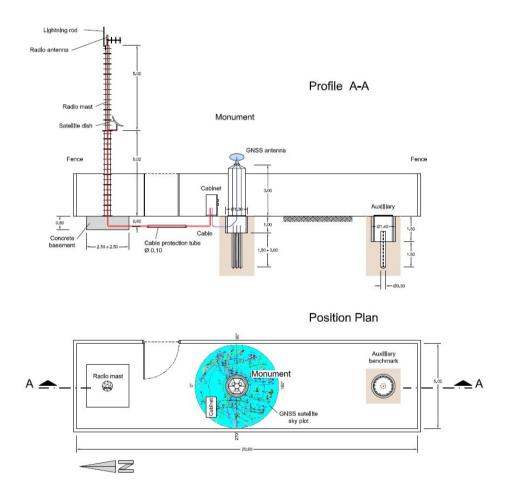
Anforderungen Fehmarnbelt Positioning Service

- operationell

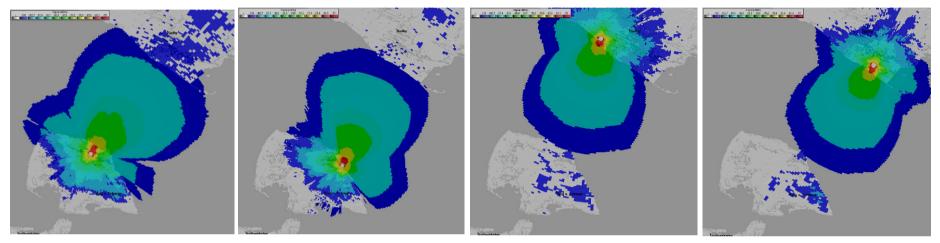

Nutzer Service: Professioneller Helpdesk

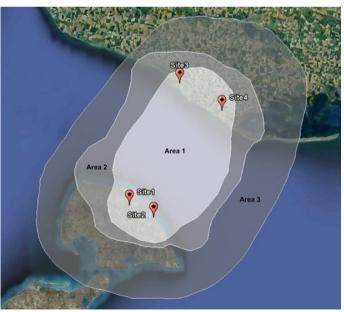
Betrieb und Überwachung: 24/7 (mit Bereitschaftsdienst)

Kundenakzeptanz: Nutzer-Training


Monatliche Performance Reports

- System-Architektur




- Umsetzung

- Gesamtverfügbarkeit für die Region

- Performance und Realisierung

June 2010	
1	99,9
2	99,6
3	99,8
4	99,8
5	99,9
6	99,9
7	99,8
8	99,7
9	99,5
10	99,9
11	99,9
12	99,8
13	99,7
14	99,7
15	99,8
16	99,7
17	99,8
18	99,8
19	99,9
20	99,9
21	99,8
22	99,7
23	99,7
24	99,9
25	99,9
26	99,9
27	99,9
28	99,1
29	99,7
30	99,8

July 2010	
1	99,7
2	99,7
3	99,2
4	100,0
5	99,5
6	99,9
7	99,8
8	99,8
9	99,8
10	99,8
11	99,9
12	99,8
13	99,8
14	97,6
15	99,8
16	99,9
17	100,0
18	100,0
19	99,7
20	99,7
21	99,5
22	99,2
23	99,9
24	99,9
25	99,9
26	99,5
27	99,9
28	99,7
29	99,9
30	99,8
31	100,0

Horizontal: 0,8 cm

(0,71 cm)

Vertikal: 1,6

1,6 cm

(0,81 cm)

- Bauwerke

- Realisierung

- Winterimpressionen

- Winterimpressionen

Die Fehmarnbelt-Querung

Anforderungen an ein präzises Positionierungssystem für die Ingenieurvermessung

Dipl.-Ing. Jürgen Rüffer

Öffentlich bestellter und vereidigter Sachverständiger der Ingenieurkammer Niedersachsen für satellitengestützte Ingenieurvermessung

> c/o ALLSAT GmbH/AXIO-NET GmbH Am Hohen Ufer 3a 30159 Hannover

<u>juergen.rueffer@allsat.de</u> / <u>juergen.rueffer@axio-net.de</u> www.allsat.de / www.axio-net.eu